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SUMMARY

Brain-wide fluctuations in local field potential oscilla-
tions reflect emergent network-level signals that
mediate behavior. Cracking the code whereby these
oscillations coordinate in time and space (spatiotem-
poral dynamics) to represent complex behaviors
would provide fundamental insights into how the
brain signals emotional pathology. Using machine
learning, we discover a spatiotemporal dynamic
network that predicts the emergence of major
depressive disorder (MDD)-related behavioral
dysfunction in mice subjected to chronic social
defeat stress. Activity patterns in this network origi-
nate in prefrontal cortex and ventral striatum, relay
through amygdala and ventral tegmental area, and
converge in ventral hippocampus. This network is
increased by acute threat, and it is also enhanced
in three independent models of MDD vulnerability.
Finally, we demonstrate that this vulnerability
network is biologically distinct from the networks
that encode dysfunction after stress. Thus, these
findings reveal a convergent mechanism through
which MDD vulnerability is mediated in the brain.
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INTRODUCTION

Major depressive disorder (MDD) is the leading cause of

disability in the world (WHO, 2017). While stress contributes to

the onset of MDD (Caspi et al., 2003; Kendler et al., 1999), only

a fraction of individuals that experience stressful events develop

behavioral pathology. Multiple factors including childhood

trauma and alterations in several molecular pathways have

been shown to increase disease risk (Caspi et al., 2003; Widom

et al., 2007); nevertheless, the neural pathways on which these

factors converge to yield subthreshold changes that render indi-

viduals vulnerable to stress are unknown. Knowledge of these

neural pathways would facilitate the development of novel diag-

nostic technologies that stratify disease risk as well as preventa-

tive therapeutics to reverse neural circuit endophenotypes that

mediate vulnerability to MDD. To achieve this aim, it is essential

to distinguish the neural alterations that confer vulnerability to

MDD from those that accompany the emergence of behavioral

dysfunction.

Chronic social defeat stress (cSDS) is a widely validated pre-

clinical model of MDD (Berton et al., 2006; Chaudhury et al.,

2013; Krishnan et al., 2007). In this paradigm, test mice are

repeatedly exposed to larger aggressive CD1 strain mice. At

the end of these exposures, test mice develop a MDD-like

behavioral state characterized by social avoidance, anhedonia-

and anxiety-like behavior, and sleep/circadian dysregulation
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(Berton et al., 2006; Krishnan et al., 2007). Critically, only �60%

of C57 mice subjected to this paradigm exhibit susceptibility to

developing this stress-induced syndrome. While the remaining

�40% of mice subjected to cSDS exhibit resilience (Krishnan

et al., 2007), susceptible and resilient mice experience the

same degree of aggressive encounters. Thus, the cSDS para-

digm provides a framework to probe putative basal network vul-

nerabilities that may exist in stress-vulnerable mice prior to

stress exposure.

Multiple regions including subgenual cingulate cortex, amyg-

dala, ventral hippocampus (VHip), nucleus accumbens (NAc),

and ventral tegmental area (VTA) have been proposed to

contribute to a putative MDD brain network (Bagot et al., 2016;

Chaudhury et al., 2013; Hultman et al., 2016; Mayberg et al.,

1999, 2005; Nestler et al., 2002). Supporting this notion, func-

tional MRI (fMRI) studies in depressed subjects have discovered

distinct functional connectivity alterations involving these brain

regions that predict individual behavioral phenotypes and anti-

depressant treatment responses (i.e., pharmacology, psycho-

therapy, and transcranial magnetic stimulation) (Drysdale et al.,

2017; Dunlop et al., 2017). However, our prior in vivo findings

in genetic mouse models of MDD and in mice exposed to

cSDS suggest that MDD-like behavioral dysfunction also arises

at the level of circuit/network spatiotemporal dynamics,

involving altered interactions of neural activity between spatially

separated brain regions over time that are not captured by the

fMRI timescale (Dzirasa et al., 2013; Hultman et al., 2016; Kumar

et al., 2013). We postulated that a signature predicting MDD

vulnerability may exist at this dynamic circuit/network-level

as well.

To test this hypothesis, we employed a transdisciplinary

strategy integrating cSDS in mice, multi-circuit in vivo record-

ings from a subset of MDD-related regions including prelimbic

cortex (PrL_Cx), infralimbic cortex (IL_Cx), NAc, central nu-

cleus of the amygdala (CeA), basolateral amygdala (BLA),

VTA, and VHip (Figures 1A and 1B), a translational assay of

neural circuit reactivity (Figure 1B; see also Movie S1) (Hultman

et al., 2016; Kumar et al., 2014), and machine learning (Gal-

lagher et al., 2017; Ulrich et al., 2015). We selected this subset

of brain regions since they have each been validated in

contributing to MDD-like behavior in multiple human and ani-

mal studies across several different research groups, and

each region can be reliably targeted in mice using our multi-cir-

cuit recording technology (Dzirasa et al., 2013). Our in vivo

recording approach quantified both cellular activity and local

field potentials (LFPs), which reflect the pooled activity of

many neurons located up to 1 mm from the electrode tip, their

synaptic inputs, and their output signals (Kajikawa and

Schroeder, 2011).

We uncovered network-level spatiotemporal dynamic signa-

tures that distinguish the neural alterations that confer vulnera-

bility to MDD prior to stress from those that accompany the

emergence of behavioral dysfunction after stress. We then uti-

lized three independent mouse models of MDD vulnerability to

verify that one spatiotemporal dynamic network represents a

convergent network-level vulnerability pathway for MDD-related

abnormalities. Finally, we used two distinct antidepressant

manipulations to verify that this network underlying MDD vulner-
ability is biologically distinct from the neural networks underlying

the expression of MDD-related behavioral dysfunction after

stress exposure.

RESULTS

Neural Model of Brain Network Function
To study the relationship between widespread spatiotemporal

dynamics and MDD pathology, we developed a probabilistic

machine learning approach using LFP activity data recorded

from seven brain regions across multiple frequencies. We

term this approach ‘‘discriminative cross-spectral factor anal-

ysis’’ or dCSFA (see Figure 1E and STAR Methods for a

detailed description of the dCSFA model) (Gallagher et al.,

2017). Our dCSFA approach yields a descriptive/generative

model, such that it discovers LFP patterns across regions

that change together over seconds of time. The model is also

predictive such that it discriminates the LFP patterns that are

specific for several pre-specified behavioral variables. Paralle-

ling classic fMRI models that describe functional connectivity

in the human brain, our dCSFA model discovers activity that

is correlated across many brain regions over seconds of time.

However, in contrast to fMRI models, our approach also en-

ables the analysis of fast oscillatory electrical signals at the

millisecond timescale. Indeed, the faster timescale features

that contribute to the observed LFP patterns include spectral

power (LFP amplitude across frequencies), synchrony (a neural

correlate of brain circuit function that quantifies how two LFPs

correlate over a millisecond timescale), and phase-directionality

(a neural correlate of information transfer, in a statistical fore-

casting sense, which quantifies which of two synchronous

LFPs leads the other), across many brain regions (see Fig-

ure S1). We therefore refer to these LFP patterns as ‘‘Electome

Factors’’ (electrical functional connectome factors/networks).

Importantly, our dCSFA model also yields an Electome Factor

activity score, which indicates the activity of each Electome

Factor during each five second segment of LFP data. A given

brain area or circuit can belong to multiple Electome Factors,

providing the opportunity for distinct Electome Factors to func-

tionally interact to yield a global brain state (the complete

Electome).

Brain-wide Neural Networks Signal MDD Vulnerability
Brain activity was recorded while animals were in their home

cage and during a forced interaction test (FIT) with an aggressive

mouse (Figure 1B). A subset of the mice was subjected to cSDS,

and the post-stress susceptibility of these mice was character-

ized using the choice interaction test (Figure 1C), which has

been shown to reliably track the expression of the full MDD-

like behavioral syndrome (Krishnan et al., 2007). All mice were

then subjected to another home cage-FIT recording. We trained

our dCSFA model using supervised machine learning to deter-

mine the oscillatory signals that are modulated across time

and discriminate: (1) all mice subjected to cSDS from non-

stressed controls (post-cSDS; N = 19 and 16mice, respectively),

(2) susceptible from resilient mice (post-cSDS; N = 10 and 9

mice, respectively), and (3) activity recorded during different seg-

ments of the home cage-FIT recordings (Figure 1B, pre-cSDS
Cell 173, 166–180, March 22, 2018 167
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Figure 1. Identification of Stress-Related Networks Using Machine Learning

(A) Partial structural wiring diagram across MDD-related brain regions in mice. We recorded from areas shown in red.

(B) Sample LFP traces recorded concurrently from seven implanted brain areas (top). Home cage-forced interaction test (FIT) used to probe brain activity during:

home cage, placed inside a small sub-chamber in an empty cage, or inside small sub-chamber in a cage with a CD1 mouse (bottom).

(C) Experimental timeline (top), and schematic of choice interaction test (CIT) to identify susceptible versus resilient mice after cSDS (bottom).

(D) Choice interaction ratios after 10 days of cSDS compared to non-stress controls.

(E) Cross-spectral factor analysis model where observations are brain features (LFP power, cross-area synchrony, and cross-area phase offsets) that are shared

by latent states (networks). These networks coordinate distinct ‘‘emotional brain states’’ represented by a given task label (i.e., susceptibility versus resilience).

We trained 25 descriptive latent networks. Six of these networks were also trained to be predictive.

(F) Four networks/Electome Factors identified using a support vector machine jointly discriminated the stress states (networks 1, 2, 3, and 4). Example support

vectors are shown above.

See also Figures S5–S7 and Movie S1.
and post-cSDS; N = 44 total mice, including 9 mice that were

only run in the pre-stress condition; see STAR Methods) (Hult-

man et al., 2016; Kumar et al., 2014).

To determine which Electome Factors derived by our dCSFA

model discriminated these stress conditions, we learned a

multivariate support vector machine classifier as part of the

dCSFA model. We found that 4 out of the 25 specified

Electome Factors discriminated these various behavioral condi-

tions (Figure 1F; see STAR Methods for a detailed description

of the dCSFA model). For discriminating cSDS exposure,

Electome Factor 2 activity was higher in mice subjected to

cSDS than in non-stressed controls (Figures 1F and 2D).

Electome Factor 2 was also higher in stress-susceptible mice

compared to the resilient animals (Figures 1F and 2D). This

Electome Factor was defined by co-modulated delta and

beta oscillations, and oscillations in this network exhibited

directionality largely from NAc to VHip and VTA (Figures 2A–

2C). Electome Factor 3 was also higher in stress-susceptible
168 Cell 173, 166–180, March 22, 2018
mice compared to the resilient animals (Figure 1F). This Elec-

tome Factor was defined by co-modulated delta oscillations

that exhibited directionality from PFC and NAc to BLA (Figures

2A–2C). Finally, Electome Factor 1 activity was enhanced by

acute exposure to the CD1 mouse during the FIT both before

and after cSDS (Figures 1F and 2D). Electome Factor 1 was

largely defined by 8-20Hz oscillations that exhibit directionality

from PFC and NAc to VHip (Figures 2A–2C). Electome Factor 4,

defined by local delta (1–4 Hz) oscillations in VHip, did not show

dramatic changes with behavioral conditions (Figure 2D),

although was nonetheless significantly associated with the

FIT (Figure 1F).

Strikingly, two of the Electome Factors signaled vulnerability

prior to the cSDS experience in this cohort of mice. During acute

exposure to the CD1 mouse (i.e., the second half of the FIT),

Electome Factor 1 was higher in stress-naive mice that later

exhibited susceptibility to cSDS than those mice that later

exhibited resilience (U = 133, p = 0.0057 for comparison of
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Figure 2. Four Electome Factors Signal Distinct Stress States

(A) Power and coherencemeasures that compose each network. Brain areas and oscillatory frequency bands ranging from 1 to 50Hz are shown around the rim of

the circle plot. The spectral power measures that contribute to each Electome Factor are depicted by the highlights around the rim, and synchrony measures are

depicted by the lines connecting the brain regions through the center of the circle. Pink and blue ribbons are used for Electome Factor 2 to highlight the two

separate frequency bands that compose the factor (blue, 2–8 Hz; pink, 12–20 Hz).

(B) The NAc and VHip spectral power density plots are shown as examples for each Electome Factor. The red dashed horizontal line identifies the relative spectral

density threshold used to depict the Electome Factor plots.

(C) Phase offset measures that define directionality within each Electome Factor (phase activity is shown at a threshold of 0.1 radians). Histograms quantify the

number of lead and lagging circuit interactions for each brain region.

(D) Electome Factor activation during pre- and post-stress home cage-FIT recordings. The thick colored lines show the average across animals, and the thin lines

in the background show the values from individual mice. Two Electome Factors (highlighted by purple) showed test-related statistical differences between

susceptible and resilient mice prior to cSDS exposure (p < 0.01; n = 5–7 mice/group).

See also Figures S1, S5, and S7.
pre-stress Electome Factor 1 activity during the forced interac-

tion with the CD1; receiver operating characteristic area under

the curve [AUC] = 0.86; N = 9-10 mice per group; Figure 2D).

In contrast, Electome Factor 2 was higher in stress-naive mice

that later exhibited susceptibility, specifically when they were

placed in the interaction chamber during the first half of the FIT
(U = 138, p = 9.7 3 10�4 for comparison of pre-stress Electome

Factor 2 activity during FIT-Empty; receiver operating character-

istic AUC= 0.92; N = 9–10mice per group; Figure 2D).We did not

observe significant differences between stress-naive suscepti-

ble mice and stress-naive resilient mice when they were in their

home cage, or across any of the other Electome Factors (p > 0.05
Cell 173, 166–180, March 22, 2018 169



for all comparisons). Thus, Electome Factors 1 and 2 were

putative biomarkers of vulnerability since they distinguished

the stress-naive test mice that would later show behavioral

dysfunction after cSDS from the mice that would later exhibit re-

silience. Electome Factor 2 was also a biomarker of the emer-

gence of MDD-related behavioral dysfunction as activity in this

network was increased in the stress-susceptible mice compared

to the resilient mice and the non-stress controls.

Electome Factor Activity Correlates with Unit Firing
Having identified these putative stress-related signatures, we set

out to verify that the Electome Factors were a bona fide repre-

sentation of biological activity and not simply abstract

mathematical constructs. To do this, we tested whether

Electome Factor activity demonstrated a relationship to the ac-

tivity of neurons recorded simultaneously from the seven brain

regions, which is a clear reflection of biological function. Specif-

ically, we quantified the activity of each of the 644 single- and

multi-units in 5-s bins and compared this activity to the activity

of each Electome Factor (Figures 3A–3E). To verify that the de-

gree of correlation of the Electome Factors with cellular firing

rates was meaningful and not due to random chance, we

compared these results to randomly shuffled firing rates (see

STAR Methods). Each of the four Electome Factors exhibited

activity that correlated with 10%–15% of the recorded cells

(N = 644 units pooled from all brain areas; Figure 3F). Many neu-

rons (250/644, 39%) showed activity that correlated with more

than one Electome Factor, and 21%–51% of the neurons from

each individual brain area correlated with at least one of the

four Electome Factors (Figure 3F). These data confirmed that

the Electome Factors reflect network-level neural processes

that emerge from cellular firing across large spatiotemporal dis-

tributions (Carlson et al., 2014).

EnhancedElectome FactorActivity Signals Vulnerability
in Three Independent Models
We tested whether Electome Factor 1 and/or Electome Factor 2

indeed reflect a convergent stress vulnerability pathway that

predicts susceptibility to future stress.We reasoned that, if these

electrical patterns were truly reflective of general MDD vulnera-

bility mechanisms, then manipulations across many different

levels of analysis implicated in MDD vulnerability should also

generate these electrical signatures. Thus, we subjected mice

to overexpression of a susceptibility hub gene, chronic inter-

feron-alpha (IFNa) treatment, or early life stress (ELS), and

directly tested whether these manipulations increased Electome

Factor 1 or Electome Factor 2 activity. Notably, we did not train

new Electome Factors using these data; rather, the electrophys-

iological signatures of these mice were projected to the space of

the Electome Factorswe previously learned using the cDSD data

to provide independent validation.

We first exploited a molecular approach to enhance vulnera-

bility in the cSDS model and then quantified the impact of this

manipulation on the Electome Factors. Both Electome Factor 1

and Electome Factor 2 exhibited directionality toward VHip.

Since we recently found that the Sdk1 gene, which encodes

the cell adhesion protein, sidekick 1, plays a central hub role in

mediating stress susceptibility in VHip (Bagot et al., 2016), we
170 Cell 173, 166–180, March 22, 2018
confirmed that Sdk1 overexpression in VHip increases stress

vulnerability (U = 328, p = 0.0074; N = 13–17mice per group; Fig-

ure 4A). We then tested whether VHip-Sdk1 overexpression

influences Electome Factor 1 or Electome Factor 2 activity, using

a within-subject design (Figure 4B). After an initial home cage-

FIT recording session, animals were injected intra-VHip with

HSV-Sdk1-GFP or an HSV-GFP control vector (Figure 4C).

Two days later, we repeated our neurophysiological recording

protocol. By applying these recording data to the Electome

model coefficients learned from our initial model in cSDS mice

(Figure 4D), we recovered Electome Factor activity measures

for the new testing sessions. Strikingly, VHip-Sdk1 overexpres-

sion, in the absence of stress, increased Electome Factor 1

activity during exposure to a CD1 mouse (U = 57, p = 0.037;

N = 5–7 mice; Figure 4E). VHip-Sdk1 overexpression in the

absence of chronic stress had no impact on Electome Factor 2

(U = 50, p = 0.265) and did not yield the behavioral dysfunction

that defines stress susceptibility as observed previously

(F1,17 = 1.03, p = 0.32 for overexpression effect on social interac-

tion; t1,15 = 0.07, p = 0.95 for immobility time; see Figures 4F and

4G) (Bagot et al., 2016). Thus, this molecular manipulation

induced a stress vulnerability behavioral state and enhanced

one of the spatiotemporal dynamic networks that our computa-

tional model linked previously to enhanced vulnerability to cSDS

in stress-naive, wild-type mice.

Second, we tested whether a physiological manipulation,

administration of IFNa, a drug that increases risk for developing

a MDD-like phenotype in humans (Bonaccorso et al., 2001), is

sufficient to induce Electome Factor activity related to MDD

vulnerability (Figure 5A). Prior studies have also shown that

mice chronically treated with IFNa exhibit modest deficits in so-

cial behavior and increased immobility in the forced swim assay,

partially recapitulating the behaviors induced by cSDS exposure

(Zheng et al., 2014). Our IFNa-treated mice continued to exhibit

preference for the social stimulus versus the empty chamber in a

three-chamber social interaction test (F1,18 = 34.89, p < 0.0001;

post hoc paired t tests t1,9 = 4.45, p = 0.0016 and t1,9 = 4.13, p =

0.0026 for PBS and IFNa-treatedmice, respectively). Though the

IFNa-treated mice tended to show reduced interaction time with

the social chamber compared to the controls, these results did

not reach statistical significance (F1,18 = 7.14, p = 0.015; post

hoc unpaired t test t1,18 = 2.1, p = 0.051 for comparison of social

time; N = 10 mice per group; Figure 5B). No differences were

observed in distance traveled in the open field (t1,18 = 0.599,

p = 0.56 using an unpaired two-tailed t test; Figure 5C). Critically,

IFNa-treated mice did not show preference for sucrose (t1,9 =

2.3, p = 0.048 for testing of sucrose effect in Veh-treated mice,

N = 10; t1,7 = 0.53, p = 0.61 for sucrose effect in IFNa-treated

mice, N = 8; Figure 5D; see also Figure S2). Thus, chronic IFNa

induced a MDD-related phenotype, however these mice did

not exhibit social avoidance, the key phenotype that defines

the full MDD-like behavioral syndrome induced by cSDS

(Krishnan et al., 2007).

We then implanted C57 animals with electrodes and treated

them with IFNa or vehicle for 5 weeks. Mice were then subjected

to the FIT (Figure 5E). Chronic IFNa treatment significantly

increased Electome Factor 1 activity during CD1 exposure in

the FIT (U = 51, p = 0.041; N = 8 mice per group; Figure 5F).
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Figure 3. Electome Factor Activity Correlates with Brain-wide Cellular Firing

(A) Example neuron waveforms.

(B–D) Mean firing rates are plotted against wave properties (peak to valley ratio and peak to valley width) for amygdala (basolateral and central) (B), prefrontal

cortex (prelimbic and infralimbic cortex) (C), VTA, NAc, and ventral hippocampus (D).

(E) Example of PFC neuron that showed significant firing relative to Electome Factor 2 activity in the home cage.

(F) Population firing relative to Electome Factor activity (N = 644 cells). Yellow bars highlight units that showed firing that correlated with Electome Factor activity.

Green bars highlight units that showed anti-correlated firing relative to Electome Factor activity. The percentage of units from each area that show firing correlated

with one of the four Electome Factors is shown to the right. The percentage of units across the show correlated firing with each Electome Factor (irrespective of

recording site) is shown on the bottom.
Nodifferencewas observed in Electome Factor 2 activity (U = 63;

p = 0.323; Figure 5F). Thus, IFNa treatment recapitulated the

Electome Factor 1 spatiotemporal dynamic network we
identified in the cSDS and Sdk1 models of MDD vulnerability

(see also Figure S3). Notably, a powerful feature of our dCSFA

model is that once the original model and coefficients are
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A B

C D
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Figure 4. VHip-Sdk1 Overexpression Selectively Increases Electome Factor 1 Activity in Stress-Naive Mice

(A) Mice were subjected social defeat twice daily for 4 days (i.e., accelerated defeat). The Sdk1 overexpression group exhibited increased susceptibility.

(B) Experimental schematic for neurophysiological recordings.

(C) Cannutrode enables site-specific viral injection in chronically implanted mice (left) and surgical schematic (middle) and image showing GFP expression in

chronically implanted mouse.

(D) LFPs recorded during the FIT were transformed using the initial dCSFA Electome model/coefficients.

(E) Sdk1 overexpression in VHip increased Electome Factor 1 activity during the FIT-CD1 (p < 0.05 for comparison activity in HSV-Sdk1 and HSV-GFPmice using

a one-tailed Wilcoxon rank-sum test). Purple boxes highlight network biomarkers of vulnerability to chronic stress in normal mice (see Figure 2).

(F and G) Sdk1 overexpression had no significant effect on social interaction (F) or immobility during a forced swim test (G) in non-stressed mice. Data are

represented as mean ± SEM.
learned, the same output features (Electome Factor activity) can

be determined from new data with LFP activity from only a sub-

set of brain areas (Figure 5E; see STAR Methods). Thus, these

mice were only implanted in the most technically accessible

brain areas (PrL_Cx, IL_Cx, NAc, BLA, and CeA).

Third, we sought to determine whether naturally occurring

behavioral experiences that increase stress vulnerability also

enhance our putative vulnerability network. Childhood trauma

is a major risk factor for developing MDD in adulthood (Widom

et al., 2007). Thus, we tested whether maternal separation

stress (Peña et al., 2017; Sachs et al., 2013) was sufficient to
172 Cell 173, 166–180, March 22, 2018
render animals more vulnerable to stress in adulthood (Fig-

ure 5G). ELS mice and their normally reared controls were sub-

jected to a sub-threshold cSDS protocol where the animals

were housed independently from the CD1 mice after each

defeat. Mice subjected to ELS and sub-threshold cSDS ex-

hibited the social avoidance that defines the stress-susceptible

cSDS phenotype (F1,34 = 4.23, p = 0.048; t13 = 5.43; p = 0.0001

for post hoc comparison of ELS/cSDS and ELS/non-stressed

mice; N = 7–8 per group; Figure 5H); However, neither

ELS nor the sub-threshold cSDS exposure was sufficient to

induce social avoidance on their own (t15 = 0.81; p = 0.43
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Figure 5. Enhanced Electome Factor 1 Activity in Two Translational Models of MDD Vulnerability

(A) Experimental schematic.

(B) Chronic IFNa administration reduced social behavior in the classic three-chamber test (̂p < 0.05 for novel-mouse effect using two-way ANOVA, #p < 0.05 using

paired t test, *p = 0.05 using unpaired t test).

(C) No locomotor differences were observed in the open field (t1,18 = 0.599, p = 0.56 using an unpaired two-tailed t test; N = 10 mice per group).

(D) Sucrose preference test (*p < 0.05 using paired t test).

(legend continued on next page)
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and t18 = 0.88; p = 0.38, for comparison of normally reared/

non-stressed mice to maternally separated/non-stressed and

normally reared/non-stressed, respectively, using a t test; N =

10 per group; Figure 5H). No differences were observed in

the interaction time with the non-social stimulus (F1,34 = 0.01,

p = 0.93 for ELS x sub-threshold cSDS interaction effect using

two-way ANOVA). Together, these findings verified that ELS

increased vulnerability to adult stress.

We then implanted a new cohort of adult ELS mice and nor-

mally reared controls with recording electrodes. After recovery,

mice were subjected to the FIT assay (Figure 5I). By transform-

ing the recorded LFP activity using our initial cSDS dCSFA

model and coefficients, we found that ELS increased Electome

Factor 1 activity during exposure to the CD1 mouse (U = 17;

p = 0.005 using one-tailed Wilcoxon rank-sum test; N = 5–7

per group), with no effect on Electome Factor 2 activity (U =

29; p = 0.318 using one-tailed Wilcoxon rank-sum test; Fig-

ure 5J). Thus, ELS was sufficient to induce the vulnerability

network signature in adult animals. Together, these findings

confirmed that three independent molecular, physiological,

and behavioral manipulations that increase MDD vulnerability

in adult animals all converged on the same Electome Factor 1

network. Electome Factor 2 failed our validation testing as a

convergent vulnerability signature across the three independent

models.

The Convergent Vulnerability Network Is Distinct from
MDD-like Behavior Networks
Our initial cSDS dCSFA model discovered that a network that

signals latent stress vulnerability (Electome Factor 1, prior to

stress) was computationally distinct from other putative net-

works that signal the emergence of the MDD-like behavior state

in susceptible mice after cSDS (Electome Factor 2 and Elec-

tome Factor 3, post-stress). After validating Electome Factor

1 as a convergent biological marker of MDD vulnerability, we

tested whether MDD vulnerability was truly biologically distinct

from MDD-related behavioral abnormalities. We reasoned that

if the Electome Factor 1 vulnerability signature was indeed

mechanistically distinct from the networks underlying the path-

ological behavior state, biological manipulations that reverse

MDD-related behavioral abnormalities would fail to suppress

Electome Factor 1 activity during our FIT assay. Thus, we

selected two distinct manipulations that have been shown to

exert antidepressant effects in both humans and rodent

models.

Deep brain stimulation (DBS) of subgenual cingulate cortex

(Brodmann area 25, BA25) induces antidepressant effects in

select clinical populations with MDD (Mayberg, 2009, 2005).
(E) Schematic for neurophysiological experiments.

(F) Chronic IFNa treatment recapitulated the neurophysiological signature of stre

(G) Schematic for ELS paradigm and experimental timeline for neurophysiologic

(H) Impact of ELS and cSDS on social behavior (#p < 0.05 for ELS x sub-thresh

unpaired two-tailed t test).

(I) Experimental schematic for in vivo recording experiments.

(J) ELS mice exhibited higher Electome Factor 1 activity during exposure to a CD1

Electome Factor 2 activity. Data are represented as mean ± SEM.

See also Figures S2 and S3.
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Critically, direct stimulation of left IL_Cx (the rodent homolog

of BA25) exhibits antidepressant-like effects in the cSDS model

as well (Lee et al., 2015). To test the impact of left IL_Cx stim-

ulation on Electome Factor activity, we infected animals with a

stabilized step-function opsin (SSFO, AAV-CaMKII-SSFO) in

IL_Cx (Figure 6A). When stimulated by blue light, SSFO induces

increased firing of neurons for over 20 minutes (Yizhar et al.,

2011). Control animals were infected with a sham virus (AAV-

Ef1a-DIO-SSFO), which does not express the opsin (Figures

6A and 6B). We then implanted animals with electrodes and re-

corded their LFP activity in the FIT immediately after blue light

stimulation (Figures 6B, 6C, and S4). IL_Cx-DBS stimulation

had no impact on Electome Factor 1 activity during exposure

to the CD1 mouse (p = 0.47 using rank-sum test; N = 5-8

mice/group). However, IL_Cx-DBS stimulation did suppress

Electome Factor 2 activity, even though the mice were

stress-naive (Figure 6D, left; F1,22 = 6.3, p = 0.029). Electome

Factor 3 activity was not suppressed by this manipulation (Fig-

ure 6D, right; F1,22 = 0.99, p = 0.34). Thus, as anticipated,

IL_Cx-DBS stimulation had no impact on our MDD-vulnerability

signature.

Ketamine is an emerging rapidly acting antidepressant

agent. A single sub-anesthetic dose of ketamine has been

shown to ameliorate susceptibility in the cSDS model in C57

mice when it is administered after the last defeat episode but

24 hours prior to behavioral testing (Donahue et al., 2014; Za-

nos et al., 2016). Thus, we tested whether ketamine, under

these same sub-anesthetic conditions, was sufficient to sup-

press Electome Factor 1 activity, again in stress-naive mice.

Animals were treated with ketamine (20mg/kg, i.p.), and the

FIT was performed 24 hr later (Figure 6E). Applying our initial

cSDS Electome model and coefficients to our recorded LFP

data, we found that ketamine indeed failed to suppress Elec-

tome Factor 1 activity (p = 0.41 using rank-sum test; N = 8

mice/group). This was consistent with prior findings in C57

mice, which demonstrated that sub-anesthetic ketamine has

no impact on behavioral responses to subsequent cSDS

(Donahue et al., 2014) or chronic corticosterone administration

(Brachman et al., 2016) when it is administered prior to the first

stress episode. Taken together with these behavioral observa-

tions, our neurophysiological results suggest that ketamine

does not target the convergent biological mechanisms under-

lying vulnerability in C57 mice. Thus, as hypothesized, neither

of the manipulations that target post-stress behavioral pathol-

ogy impacted our stress vulnerability signature, Electome

Factor 1, providing clear evidence that neural network mecha-

nisms conferring stress vulnerability are distinct from those

mediating a stress-induced MDD-like behavioral state (see
ss vulnerability identified in Electome Factor 1, but not Electome Factor 2.

al testing.

old cSDS interaction effect using two-tailed two-way ANOVA; *p < 0.05 using

mouse compared to normally reared controls. No difference was observed in
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Figure 6. Biologically Distinct Mechanism Underlies MDD Vulnerability

(A) IL_Cx infection strategy.

(B) Prominent suppression of IL_Cx gamma (30–50 Hz) oscillations was observed after blue light stimulation in animals expressing SSFO. Representative

Prefrontal cortex histological images in SSFOmice and DIO-SSFO controls. Broad EYFP labeling was observed in PrL_Cx and IL_Cx in SSFOmice. The light fiber

was implanted at the dorsal IL_Cx border.

(C) Schematic for SSFO experiments.

(D) Electome Factor activity in SSFO mice compared to the DIO-SSFO sham controls (N = 5–8 mice/ group).

(E) Schematic for ketamine experiment.

(F) Electome Factor activity in ketamine-treated mice compared to saline-treated controls (n = 8 mice/group).

See also Figure S4.
Figure S5). Interestingly, ketamine did suppress Electome Fac-

tor 3 activity (F2,28 = 5.61, p = 0.009; U = 64, p = 0.72; U = 88,

p = 0.038; and U = 60, p = 0.44 using post hoc rank-sum test
for the home cage, FIT-empty, and FIT-CD1 intervals, respec-

tively). Electome Factor 2 was not affected by this manipula-

tion (Figure 6F; F1,28 = 1.27, p = 0.28).
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DISCUSSION

The complex way multiple brain regions coordinate in time and

space to effect specific emotional states has been the aim of a

number of animal studies correlating neural synchrony at the

millisecond timescale with emotional and cognitive behavior

(Adhikari et al., 2010; Dzirasa et al., 2013; Jones and Wilson,

2005; Sigurdsson et al., 2010). Behaviorally relevant manipula-

tions including pharmacology, genetics, and task difficulty

have all been shown to impact neural synchrony as well (Brincat

and Miller, 2015; Tamura et al., 2016; Wang et al., 2016). These

correlation studies have promoted the causal role of neural syn-

chrony in encoding emotional behavior, but they have not gener-

ally included measures of brain-wide neural synchrony. As such,

it has remained unclear whether observed changes in neural syn-

chrony are restricted to specific brain circuits or reflect more

general phenomena that are distributed across larger networks.

Additional studies sought to address this question by selectively

manipulating cellular activity within specific circuit nodes (Karalis

et al., 2016; Schmitt et al., 2017; Spellman et al., 2015). While

these circuit-specific manipulations were sufficient to alter

emotional behavior, further studies also revealed that manipu-

lating activity within one circuit node was sufficient to alter activ-

ity across other brain regions/neural circuits (Hultman et al.,

2016; Kumar et al., 2013). Taken together, these findings

suggest that emotional behavior arises from the coordinated

interaction of many brain circuits rather than individual circuits

in isolation. In this network framework, emotions emerge when

millisecond interactions across many circuits are coordinated

together across a broader timescale. Supporting this model,

newer studies in which oscillatory activity was measured from

many brain sites concurrently have shown that changes in neural

synchrony occur concurrently across many circuits during

emotional behaviors (Schaich Borg et al., 2017; Wang

et al., 2016).

Machine learning has emerged as a powerful tool in neurosci-

ence for relating large-scale observations in the brain to

behavior. While multiple supervised approaches have demon-

strated the ability to classify new subjects/animals/trials into

specific groups based on complex patterns in large-scale data

(i.e., prediction), this has generally occurred at the expense of

understanding the way these complex predictive patterns map

directly to distinct lower order phenomena in the brain (i.e., inter-

pretability). We developed our two-layer dCSFA approach to

address this gap (Figure 1E). The first layer of our dCSFA

approach is based on achieving interpretability (i.e., relating

our findings back to specific neural measurements). We built

this layer on LFP activity since LFPs (1) can be measured at

the temporal resolution of neuronal spiking (i.e., milliseconds),

(2) can be reliably obtained from implanted animals, (3) can be

stably acquired across testing sessions, and (4) are robust to

subtle differences in electrode placement (Figures S6 and S7).

Furthermore, multiple studies by various groups have directly

related LFP features including power, synchrony, and direction-

ality to normal emotional and cognitive behavior, and to behav-

ioral dysfunction in disease models, demonstrating that these

features are interpretable. This layer of our dCSFA approach de-

scribes how the interpretable features in the model change
176 Cell 173, 166–180, March 22, 2018
together over time (descriptive/generative). It is analogous to

classical approaches like principal component analysis that

have been used broadly to identify ‘‘networks’’ in complex

data. Since prior work in humans has linked stress-pathology

with changes in brain-wide generative networks across seconds

of time (Drysdale et al., 2017; Greicius et al., 2007), we built this

layer to integrate the time resolution of LFP activity with the time-

resolution of human-fMRI (i.e., seconds). As a result, the first

layer of the dCSFA model integrates the dynamic activity of

many brain regions and their millisecond-timescale neural circuit

interactions into a single statistical framework. The second layer

of dCSFA is designed to achieve prediction. This layer encour-

ages the model to learn ‘‘interpretable’’ components that sepa-

rate distinct pre-specified behavioral periods. By integrating

these two layers into a single method, our resultant machine

learning models achieved prediction and interpretability (Gal-

lagher et al., 2017).

We used this machine learning approach to discover how the

activities of many circuits are coordinated into distinct networks

to signal normal and pathological emotional states. Not only did

our dCSFA model discover an interpretable network that was

predictive across a new group of animals (i.e., generalizable,

see Figure S5B), this network was also predictive acrossmultiple

biological contexts related to MDD vulnerability (i.e., conver-

gent). By contrast, the neural correlate of vulnerability we previ-

ously discovered in the cSDSmodel (Kumar et al., 2014) (PFC 2–

7 Hz reactivity) failed to predict the increased vulnerability we

observed in the translational ELS model (Figure S5C). Thus,

the dCSFA approach discovered a pattern of coordinated

brain-wide activity that signals MDD vulnerability. Each network

discovered by the dCSFA model can be composed of as little as

one brain area/brain circuit (e.g., Electome Factor 4 was only

composed of hippocampal delta activity), and each brain area/

circuit can belong to multiple networks. The dCSFA model can

also discover both univariate andmultivariate features that relate

to behavioral states. Thus, when a particular interpretable

feature is included within an Electome Factor (network), the

model suggests that the behavioral relevance of that feature is

dependent upon the activation context of the other circuits within

that same Factor (see Figure S5D).

Strikingly, we found that three of the behaviorally relevant

networks we discovered in the cSDS model (Electome Factors

1, 2, and 3) each involve all of the brain regions we recorded.

This coordination of multiple cortical and limbic brain regions

sheds light on prior cell and molecular studies, which have found

that manipulations of multiple target brain sites across this

network can promote or suppress susceptibility in the cSDS

model (Bagot et al., 2016; Chaudhury et al., 2013; Hultman

et al., 2016). Importantly, these three Electome Factors were

only distinguished by their spatiotemporal dynamic features

including the frequency of oscillatory synchrony and the direc-

tionality of information flow across the regions. Since our

machine learning approach facilitates unbiased discovery of

the oscillatory frequencies of each brain area/circuit within a

network, our results suggest that spatiotemporal dynamics are

a central biological mechanism that organizes brain-wide neural

activity into behaviorally relevant networks. This importance of

spatiotemporal dynamics is consistent with myriad optogenetic
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Figure 7. Experimental Findings an Elec-

tome Model of MDD Vulnerability

(A) Summary of experimental findings. Arrows

indicate direction of change in Electome Factor

scores under conditions on left. Results in green

indicate confirmation of experimental hypotheses.

(B) Putative model of MDD vulnerability and

behavioral dysfunction based on experimental

observations. Experiences such as early life

trauma increase Electome Factor 1 activity which

promotes vulnerability. Chronic stress in vulner-

able animals increases Electome Factor 2 and 3

activities, yielding MDD pathology. Antidepres-

sants suppress Electome Factor 2 and 3 to reverse

behavioral pathology. Manipulations that sup-

press Electome Factor 1 in stress-naive mice

remain to be discovered.
studies, which demonstrate that the behavioral output induced

by supraphysiological circuit activation is dependent on the fre-

quency at which light stimulation is delivered. Our results extend

these findings by discovering the endogenous oscillatory fre-

quencies that guide the function of emotionally relevant neural

circuits. We also show that the coordination of spatiotemporal

dynamics acrosswide-spread neural circuits, and not solely syn-

chrony between pairs of brain regions, is a key neural mecha-

nism underlying MDD pathology.

Two of the spatiotemporal dynamic networks we discovered

reflect the emergence of MDD-like behavior in susceptible ani-

mals after cSDS (see Figure 2D; Electome Factor 2 and Electome

Factor 3). Two distinct antidepressant-like manipulations each

suppressed activity in one, but not both, of these Electome Fac-

tors (Figures 6 and 7). Notably, we did not test whether ketamine

or IL_DBS directly exhibited antidepressant behavioral effects in

our study. Nevertheless, since we observed that these manipu-
lations suppressed activity in networks

relevant for the emergence of MDD-like

behavior, we believe that our findings

are consistent with prior work demon-

strating that prefrontal cortex stimulation

and ketamine both induce antidepres-

sant-like effects in the cSDS model (Do-

nahue et al., 2014; Kumar et al., 2013;

Lee et al., 2015; Zanos et al., 2016).

Thus, our findings suggest that multiple

networks may have to synergize in order

to yield a global spatiotemporal dynamic

global brain state that mediates MDD.

Furthermore, suppressing activity in any

one of these networks may be sufficient

to reverse MDD pathology (i.e., an Elec-

tome Factor two-hit model; see Figure 7).

Alternatively, each of the Electome

Factors may mediate a different subset

of MDD-related behaviors, and suppress-

ing an Electome Factor may only

normalize the pathological behaviors

that it encodes. Future experiments will
be needed to clarify the role of additional MDD-related brain re-

gions in the Electome Factors.

While our current and prior findings provide strong support for

human studies that frame MDD as a brain circuit/network disor-

der based in disrupted spatiotemporal dynamics (Drysdale et al.,

2017; Greicius et al., 2007; Hultman et al., 2016), here we discov-

ered a naturally occurring spatiotemporal dynamic network that

signals vulnerability to cSDS in stress-naive mice (Electome

Factor 1). To demonstrate the reliability of this network, we

applied gold-standard validation based on complete

out-of-sample testing. We performed this validation in three in-

dependent models of MDD vulnerability (p = 6.2 3 10�4 using

Fisher’s combined probability test) to demonstrate that this

network was biologically relevant to MDD vulnerability and not

solely the cSDS model. Finally, we demonstrated that this

network was not affected by our two antidepressant-like

manipulations. These findings thus provide clear evidence that
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Electome Factor 1 encodes a MDD vulnerability pathway that is

convergent across many biological conditions that increase risk

for MDD. Furthermore, our studies using well-validated antide-

pressants indicated that this network pathway is biologically

distinct from these pathways that signal MDD-like behavioral

dysfunction. Such identification of distinct networks represent-

ing different biological states demonstrates that our computa-

tional approach allows us to discover the network features that

organize state-specific information within individual brains.

Importantly, we also show that these network features extrapo-

late across different animals and biological paradigms, address-

ing a critical challenge that has limited the utility of machine

learning to uncover the fundamental mechanisms whereby the

brain encodes emotional pathology at the systems level. Future

experiments aimed at determining whether our Electome

Framework extends to other emotional disorders are warranted.

Finally, we discovered that Electome Factor 2 was enhanced

in the stress-naive mice that exhibited vulnerability to future

cSDS stress (Figure 2D). While this Electome Factor failed

validation testing as a convergent vulnerability biomarker in the

other MDD models, future studies are warranted to determine

the role of this network in mediating naturally occurring dif-

ferences in vulnerability to chronic social stress. We also found

that IFNa-treated mice did not show an increase in Electome

Factor 2 and 3 activities (Figures 5F and S3), the two factors

that signaled the emergence of behavioral pathology in the

cSDS model. This raises the possibility that the behavioral pa-

thology induced by IFNamay be signaled by an Electome Factor

that was not observed in the cSDSmodel. Future experiments in

which a unique Electome is learned in the IFNa may clarify this

question.

Overall, the identification and validation of a MDD vulnerability

neural network in healthy stress-naive mice raises the potential

that brain spatiotemporal dynamics can be exploited to develop

a novel class of therapeutics that prevent the emergence of MDD

in vulnerable individuals in response to stressful experiences.
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Dzirasa (kafui.dzirasa@duke.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Care and Use
C57BL/6J (C57) male mice purchased from the Jackson Labs and CD1 male mice purchased from Charles River Laboratory were

used for cSDS, Sdk1, and IFNa experiments presented in this study. The C57 male mice used for early life stress studies were

bred within the Duke Vivarium. C57 mice were housed 3-5 per cage and separated after surgery, and then singly housed without

enrichment four days prior to social defeat. All CD1 mice were retired male breeders. These mice were singly housed with environ-

mental enrichment. All animals were maintained on a 12-hour light/dark cycle, in a humidity- and temperature-controlled room with

water and food available ad libitum.

Studies were conducted with approved protocols from the Duke University Institutional Animal Care and Use Committee and were

in accordance with the NIH guidelines for the Care and Use of Laboratory Animals. Except when noted otherwise for early life stress

experiments, these studies were conducted using mice that were 8-16 weeks old.
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METHOD DETAILS

Neurophysiological data acquisition
Neuronal activity was sampled at 30kHz using the Cerebus acquisition system (Blackrock Microsystems Inc., UT). Local field poten-

tials (LFPs) were bandpass filtered at 0.5–250Hz and stored at 1000Hz. Neuronal data were referenced online against awire within the

same brain area that did not exhibit a SNR > 3:1. At the end of the recording, cells were sorted again using an offline sorting algorithm

(Plexon Inc., TX) to confirm the quality of the recorded cells. Only cellular clusters well-isolated with respect to background noise,

defined as aMahanalobis distance greater than 3 compared to the null point, were used for our unit-Electome Factor correlation anal-

ysis. Clusters that exhibited more than 99.5% of their inter-spike-interval distribution above 2ms were defined as single units (53% of

recorded neurons). Ultimately, we chose to use both single and multi-units for our analysis since our sole objective was to determine

whether the Electome Factor Activity showed temporal dynamics that reflected cellular activity. Neurophysiological recordings were

referenced to a ground wire connected to both ground screws.

Electrode implantation surgery
Mice were anesthetized with 1.5% isoflurane, placed in a stereotaxic device, and metal ground screws were secured above the

cerebellum and anterior cranium. The recording bundles designed to target amygdala (AMY), NAc, VTA, PFC, and VHip were

centered based on stereotaxic coordinates measured from bregma (AMY: �1.6mm AP, 2.75 mm ML, �3.9 mm DV from the

dura; NAc: 1.6mm AP, 1.4mm ML, �3.5 mm DV from the dura; PFC: 1.7mm AP, 0mm ML, 2.25mm DV from the dura;

VTA: �3.3mm AP, 0.5 mm ML, �4.25 mm DV from the dura; (VHip: �3.7mm AP, 3.0mm ML, �3.5mm DV from the dura). We chose

these coordinates tomatch the coordinates utilized in our prior molecular studies in the cSDSmodel (Bagot et al., 2016). We targeted

PrL and IL using the PFC bundle by building a 0.5mm DV stagger into our electrode bundle. The cSDS cohort of animals was

implanted bilaterally in PFC. All other animals were implanted on the left side. We targeted BLA and CeA by building a 0.5mm ML

stagger and 0.3mm DV stagger into our AMY electrode bundle. Histological analysis of implantation sites was performed at the

conclusion of experiments to confirm recording sites used for neurophysiological analysis.

Homecage recordings
Mice were connected to a headstage (Blackrock Microsystems, UT, USA) without anesthesia, and placed in a new home cage.

Recordings were initiated after a 30-min habituation period.

Forced interaction test
The forced interaction test was performed as previously described (Hultman et al., 2016; Kumar et al., 2014). Notably, a homecage

recording was always performed immediately prior to the start of the forced interaction test. C57 mice were placed in a 3.25’’ x 7’’

Plexiglas cylinder. Following a 5-min recording period during which neurophysiological activity was recorded, a CD1 aggressor

mouse was introduced to the cage outside of the cylinder (18’’ high walls surround the outer cage to prevent escape and a lid is place

over the inner chamber to prevent the aggressor from climbing in). Neurophysiological data were then recorded for five additional

minutes. Mice used to build the Electome model were subjected to the forced interaction test prior to and after exposure to

cSDS. Mice used for the Sdk1 overexpression experiment were subjected to the forced interaction test prior to and after viral infec-

tion. Mice used for the IFNa and maternal separation stress experiments were only subjected to the forced interaction test once in

adulthood.

Chronic social defeat stress
Mice implanted with electrodes underwent 10 days of cSDS as previously described (Berton et al., 2006; Hultman et al., 2016;

Krishnan et al., 2007). Specifically, male retired-breeder CD1 (Charles River) mice were used as resident aggressors for the social

defeat and were singly housed prior to the experiments. C57 mice were then randomly assigned to control or defeat groups such

that no entire cage was assigned to the same group. All C57 mice were singly housed prior to being subjected to cSDS. Particularly

aggressive CD1s, as defined by demonstrating at least one successful act of aggression toward an intruder C57 male within 60 s,

were selected for use for cSDS. Intruder male C57 mice were introduced to the cage of a novel CD1 aggressor for 5 min daily,

and then housed adjacent to the same aggressor for 24 hr. During this time, mice were separated by a transparent and porous

plexiglass barrier to enable constant sensory exposure.

During bouts of exposure to the CD1mice, hallmark behavioral signs of subordination stress were observed including escape, sub-

missive postures (i.e., defensive upright and supine) and freezing. Following the last 24-hr exposure to a CD1 aggressor mouse, all

C57s were housed individually. Mice that exhibited significant injuries during social defeat stress were removed from post-stress

analysis (Hultman et al., 2016). Several animals used to construct the initial cSDS Electome model were also used in our prior study

(Hultman et al., 2016). Neither the pre-stress data presented in this study nor any neurophysiological activity from VHip were used for

any prior analysis.
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Choice social interaction test
Mice were placed within a novel arena (46cm x 46cm) with a small cage located at one end, and each mouse’s movement was

monitored for 150 s. Mice were then removed from the testing chamber, and reintroduced 30 s later after a non-aggressive CD1

mousewas placed in the small cage. The time C57mice spent in the interaction zone was quantified using Ethovision XT 7.1 software

(Noldus Information Technology, Wageningen, Netherlands). The interaction ratio was calculated as (Interaction time when CD1 was

present)/(Interaction time when CD1 was absent) (Hultman et al., 2016; Kumar et al., 2014).

Discriminative Cross-Spectral Factor Analysis
Prior to the application of our machine learning framework to the data, there are several preprocessing steps. The raw data consist of

multiple electrode channels for each brain region. First, the raw data channels for each region are averaged together. Then the data

are notch filtered at 60Hz to remove electrical line noise. The recordings are normalized such that signal from each electrode within

each window has a mean of 0 and standard deviation of 1. The data are then subsampled to 200Hz from the original sampling rate of

1000Hz for computational and memory efficiency.

Within each window, the statistical model assumes that the signal is stationary, meaning that relevant dynamics occur at the level

of windows. Prior work has shown relative robustness for window sizes between 0.5 s and 10 s (Ulrich et al., 2015). Briefly, each time-

window includes N observations from R distinct brain regions. N is determined by the sampling rate and the length of time that each

window represents. For a 5 s window subsampled at 200Hz, N is 1000. We represent the matrix of observations from window w by

Yw = ½yw1 ;.;ywN �˛RR3N. These observations are located on a uniformly spaced temporal grid, such that each ywn corresponds to the

relative time location xwn within the window. The difference between subsequent temporal samples is given by xwn � xwn�1bd where

ð1=dÞ represents the sampling rate of the LFP time-series (note that 1=d = 200Hz from the sampling rate). The set of time locations

sampled in window w is denoted xw.

These data were processed with a discriminative cross-spectral factor analysis model, where the contribution of each factor to the

signal within a window was modeled as a draw from a multi-output Gaussian process. The full set of Gaussian processes, each cor-

responding to one factor, allow us to capture brain spatiotemporal dynamical features in an integrated brain-wide model. This meth-

odology has been previously published (Gallagher et al., 2017), and we include all key steps below.

To allow the individual factors to discover LFP features that incorporate spectral power, synchrony and phase-directionality be-

tweenmany brain regions, the factors weremodeled by amulti-output Gaussian process within amultiple-kernel-learning framework

(Gönen and Alpaydın, 2011). Gaussian processes are non-parametric probabilistic descriptions of data that offer a powerful basis for

non-linear multivariate regression and classification tasks. They are widely utilized in themachine learning literature. The probabilistic

relationship between data are determined by the Gaussian process ‘‘kernels’’ that describe covariance relationships between indi-

vidual data points. We recently designed a Gaussian process kernel termed the Cross-Spectral Mixture (CSM) kernel, which targets

spectral power, synchrony and phase-directionality between many brain regions (Ulrich et al., 2015). In discriminative cross-spectral

factor analysis (dCSFA), wemodel our data as contributions frommultiple Electome Factors, where each factor is defined by a single

CSM kernel. By windowing the data, we track the expressed strength of these factors over time. We model each temporal observa-

tion in a window by

Yw =
XL

[= 1

sw[F
[
wðxÞ+ ew;
where ew˛RR3N is additive Gaussian noise where each entry is d
rawn independently with precision (i.e., inverse variance) g: The

parameters sw = ½sw1;.; swL�T are a vector of factor scores, and are unique to each time window. The factor scores denote how

strongly each Electome Factor is expressed in that window, and can be interpreted approximately as the amount of signal variance

associated with the corresponding factor. Importantly, the [th latent function (denoted by F[
wðxÞ) has a different instantiation for every

window, and represents the contribution of the [th factor to that window. For all windows, F[
wðxÞ is independently drawn from the

same distribution. These functions are not directly shared across time windows; rather, the underlying cross-spectral content (power

and phase synchrony) of the signals is shared and implied by the distribution. To obtain this effect, a distribution over the latent

functions is used to encode the full cross-spectrum, given by a multi-output Gaussian process (Álvarez et al., 2011; Rasmussen

and Williams, 2006).

F[
wðxÞ � GPð0;KCSMð,; , ; q[ÞÞ;
where the covariance kernel K ðx; x0
; q[Þ establishes the Gaus
CSM sian covariance structure between all latent function values F[

w =

½f[wðxw1 Þ;.;f[wðxwNÞ�. Mathematically, ðKCSMðx; x0
; q[ÞÞijbcovðf[wiðxÞ;f[wjðx

0 ÞÞ; in words, this defines how the function F[
w at time x in region

i covaries with the same function at time x
0
in region j. Themulti-output Gaussian process structuremodels the signal as amultivariate

normal. Specifically,

vec
�
F[

w

� � Nð0;SÞ;
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where ‘‘vec’’ denotes the vectorization of the matrix, and S denotes a covariance matrix constructed by evaluating the covariance

kernel at the appropriate points xw. The CSM covariance kernel represents the cross-spectra between the R regions as the real part

of a complex mixture of Q Gaussians defined in the frequency domain (Ulrich et al., 2015; Wilson and Adams, 2013).

KCSMðx; x0
; q[Þ=Ref PQ

q= 1

B[
qksgðx; x

0
;m[

q; n
[
qÞg; where B[

q˛C
R3R is the coregionalization matrix, and ksg is a spectral Gaussian kernel.

The covariance kernel parameters are given as q[ = fB[
q;m

[
q;n

[
qg, defining a unique stationary CSM kernel (Ulrich et al., 2015). These

parameters q[ directly map to power and phase coherence.

ksgðx; x0
;m[

q; n
[
qÞ= exp

�
� 1

2
n[qðx � x

0 Þ2 + jm[
qðx � x

0 Þ
�
; where j represents

ffiffiffiffiffiffiffi�1
p

. The spectral Gaussian kernel gives a covariance

structure that is equivalent to a power spectral density that is a Gaussian distribution in the frequency domain centered at frequency

m[
q and with variance n[q. The coregionalization matrix B[

q applies a relative scale and phase-shift to the corresponding spectral

Gaussian kernel for spectral density that we wish to model. We model a spectral density for each area and pair of areas, with the

diagonal entries of B[
q corresponding to the power-spectral densities for individual areas and non-diagonal entries corresponding

to cross-spectral densities for every pair of areas. The coregionalization matrix is also limited to a rank-R structure, which reduces

the total number of parameters in the model and reduces overfitting. This is constrained by using the parameterization B[
q =

~B
[

qð~B
[

qÞ
y
,

where ~B
[

q˛C
C3R is in the complex domain and y is the conjugate transpose. ~B

[

q is then learned from the data instead of learning B[
q

directly. For identifiability in the factor model, the CSM kernels are restricted to a correlation function such that

maxðdiagðKCSMð0; 0; q[ÞÞÞ= 1 for all [.

During inference, all latent functions are marginalized out and gradient-based optimization is used to obtain the set of parameters

Q= ffq[gL[=1; fswgWw=1g that maximize the log marginal likelihood, ln pðY jQÞ (Rasmussen and Williams, 2006). We choose the iR-

prop- learning algorithms for optimization (Igel and Husken, 2003). The model parameters are learned over iterative steps until the

model has reached the convergence criterion, indicating that further steps will not produce significant improvement of the model.

The convergence criterion is considered to have occurred if the average relative change over all parameters was less than a chosen

threshold c for 10 consecutive learning iterations. For training the initial model, we let c be 0.001.

The approach described above is completely unsupervised (does not use label/task/behavioral information); however, it is often

beneficial to uncover data-fitting latent structure while also inheriting strong predictive power pertaining to recorded side information

(e.g., task condition or whether an animal was subject to chronic social defeat stress). In the discriminative CSFA (dCSFA) model, a

supervised max-margin formulation (Zhu et al., 2012) influences factor score learning such that the scores sw and the CSM kernels

are more predictive of this side information, thereby encouraging the model to extract latent features relevant to the electrophysio-

logical signatures of these conditions.

Eachwindow is provided a binary class label zw˛f� 1; 1g. Denoting a+b as the elementwise vector product, we desire the squared

factor scores ~sw = sw+sw˛RL to be predictive of the class label zw for each windoww. Max-margin optimization problems attempt to

find the optimal hyperplane that separates the two classes (Cortes and Vapnik, 1995). In particular, classification parametersJ are

introduced, and a linear discriminant function is defined by gð~sw;JÞ = bT~sw + b, with J = fb; bg. The classification rulebzw = signðgð~sw;JÞÞ is used to form a prediction of the class label. The optimization problem is then set up as a composite objective

function consisting of the original CSFA objective and the classification objective,

arg min
Q;J

XW
w= 1

�logpðYw jQÞ+ lð1� zwgð~sw;JÞÞ+ +
1

2
j jb j j 2:
The second term of the previous equation enforces maximum se
paration between classes by penalizing on the hinge loss function

ð1� zwgð~sw;JÞÞ+ = 0 for all windows, where ðxÞ+ = maxð0;xÞ. An [2-regularization penalty is placed on b for identifiability. The al-

gorithm setting of l controls the relative emphasis of the classifier during learning, as compared to the log-likelihood term. A gradient

method is used to jointly optimize the factor analysis parametersQ. To increase the interpretability of the approach, the classifier is

typically limited to use only a subset of the learned factors for class prediction.

We note a few unique aspects of this approach. 1) While prediction is often performed in a downstream processing component

(e.g., first fit a latent factor model, then train an SVM independently on the factor scores), the ability to jointly infer model parameters

with amax-margin model improves predictive power while simultaneously uncovering latent structure (Zhu et al., 2012). 2) The factor

scores in the Gaussian process factor model are a non-linear embedding of the multi-channel time-series observations; this embed-

ding is analogous to a non-linear version of supervised dictionary learning (Mairal et al., 2010) and to interpretable descriptive neural

networks (Pu et al., 2015) with imposed structure on cross-spectral density estimation.

Projecting new data into the ‘Factor Space’
After the network has been trained, the learned feature representation can be applied to novel data by ‘projecting’ the new data onto

the original set of factors. Given a new window Yw�
, then the electome factor parameters are fixed and only the factor scores are

learned with the objective of minimizing the negative log likelihood
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arg min
sw�

� logp
�
Yw� jsw� ; fq[gL[= 1

�
:

This optimization is calculated via the same gradient iterative met
hods described above. For fitting all of the non-training datasets in

this work, we let the convergence threshold c be 0.01.

In some cases, the set of recorded brain regions in a new window does not match the set of regions that the CSFA model was

trained on. Because the latent factor analysis is a generative model, this data can be still projected to the original factor set by

removing the unobserved channels from the log-likelihood calculation under a Missing Completely at Random (MCAR) assumption.

Because of theGaussian formulation, themathematical form is analytic. Specifically, themissing channels can bemarginalized out of

the covariance kernel for each factor. The resulting likelihood can then be used to learn the feature scores with the same gradient

methods as above. Therefore, datasets with different measured brain regions can be projected and compared in the same space.

Hyper-parameter selection
Our objective in training was to learn four predictive features (±chronic stress, susceptibility/resilience, the empty segment of the

forced interaction test, and the CD1 segment of the forced interaction test). The hyperparameter settings for the model were chosen

as follows: We chose to use 25 total factors based on a leave-one-animal-out cross-validation scheme. We chose to include 6 pre-

dictive factors to allow for model flexibility in solving the predictive learning task. Predictions on the classification task were limited to

those six factors to force a compact, scientifically testable and statistically friendly hypothesis space. For learning the initial model,

the noise precision ðgÞ was chosen to be 200, the number of spectral Gaussians kernels per factor (Q) was chosen to be 20, and the

rank ofB[
q (R) was chosen to be 2, all based on previous work (Ulrich et al., 2015). The objective ratio parameter ðlÞwas chosen to be

50. For projecting new datasets into the factor space from the initial model, g was chosen to be 0.1.

Datasets
Weused a total of 44C57mice for our dCSFA analysis.We used 19mice subjected to cSDS and 16 non-stressed controls in the post-

stress data. All 35 of these mice were also used in the pre-stress data group. Data from 9 additional mice were included in the

pre-stress, but not post-stress, dataset. Adding these 9 mice assured that the predictive factors learned for the home cage—forced

interaction test segments did not contain mouse specific signals that yielded incidental putative vulnerability signatures in the pre-

stress dataset.

The initial cSDS training data were split into a training dataset and a testing dataset. Specifically, 30% of the data windows were

held out from training to serve as a test set. Note that datasets collected after the initial model was trained were not used to choose

model parameters and can be treated as a true validation or hold-out set. This includes datasets collected for the sdk1, IFNa, ELS,

ketamine, and SSFO experiments.

Spike-Electome Factor activity correlation
Data acquired during the ‘post-stress’ forced interaction test were used for this analysis. Unit firing activity was averaged within 5 s

non-overlapping windows for the 20-min recording period (10 min home cage, 10 min forced interaction test). A RhoRaw was calcu-

lated for each spike and Electome Factor correlation using the spearman rank test. We then randomly shuffled the bins of spike

activity within the homecage and each segment of the forced interaction test, and recalculated the spearman rank to yield a RhoRand.

We repeated this shuffling procedure 10,000 times to yield a distribution of correlation values expected by chance between each

unit and Electome Factor and ranked the resulting RhoRand values. The Electome Factor coefficient score for a unit was then

defined as RhoRaw-S(RhoRand)/10,000. Electome Factor-Spike coefficient was considered significant for RhoRaw values less than

the 62nd lowest RhoRand or higher than the 9,937th highest RhoRand value of the chance distribution (corresponding to an a = 0.05

with Bonferroni correction for the 4 Electome Factors tested).

Sdk1 viral surgery for accelerated defeat
Mice were anaesthetized with ketamine (100mg/kg) and xylazine (10mg/kg) and placed in a small-animal stereotaxic instrument

(Kopf Instruments). HSV virus (0.5mL of either HSV-Sdk1 or HSV-GFP) was bilaterally infused using 33-gauge syringe needles

(Hamilton) into the vHIP (bregma coordinates: anterior/posterior,�3.7 mm; medial/lateral, 3 mm; dorsal/ventral, �4.8 mm; 0� angle;
targeting ventral subiculum). Two days after viral infusion, the animals underwent an accelerated defeat protocol in which they were

subjected to social defeat stress twice daily for 10 min over four days.

Sdk1 viral surgery for neurophysiological recordings
We developed the ‘‘cannutrode’’ system to infuse virus into previously implanted animals and thereby quantify the effect of

VHip-Sdk1 overexpression using a within-subject design. For in vivo recording experiments, animals were implanted with recording

electrodes as specified above. A cannula was built into the microwire bundle targeting left VHip. Additionally, a 360mm diameter

cannula (MicroLumen, Oldsman, FL) was implanted above right VHip, both of the cannulas were implanted to a depth of 1mm. After

the initial forced interaction test experiment, mice were anesthetized with 1.5% isoflurane, and a 33-gauge Hamilton syringe was

used to bilaterally infuse 0.5 mL HSV vector at a rate of 0.1 ml/min through the cannula into VHip.
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This cannutrode system was critical for using HSV viruses to interrogate the impact of molecular pathways on Electome Factor

activity, since our mice required 10-14 days to recover from electrode implantation, and HSV transgene expression is limited to

1-5 days after infection.

Viral histology
Animals were perfused with 4%paraformaldehyde and brains were harvested and stored for 24 hr in PFA. Brains were cryoprotected

with sucrose and frozen in OCT compound and stored at �80C. Brains were sliced at 35mm and stained using anti-GFP

(ThermoFisher, Waltham, MA) and Alexa488-anti-rabbit (ThermoFisher, Waltham, MA) antibodies using standard methods. Images

were obtained using a Nikon Eclipse fluorescence microscope at 4x and 10x magnifications.

IFNa dosing
We utilized an IFNa administration protocol that has been previously shown to induceMDD-like behavior in mice (Zheng et al., 2014).

Briefly, mice were assigned by cage to control and experimental groups randomly. Mice were then injected with either mouse IFNa

(4x105IU/kg i.p; Miltenyi Biotec, Auburn, CA) diluted in phosphate-buffered saline (PBS) or a PBS vehicle for 5 weeks. Implanted

animals were tested in the sucrose preference test and forced interaction test. Non-implanted animals were tested in the social

interaction test and open field. Animals continued to receive daily injections throughout the course of the study.

Three chamber social interaction test
A plexiglass box 60.7cm x 43.2cm x 21.6cm with four clear outside walls and a double-sided mirror base was used. Infrared video

recordings were collected from beneath. Two plastic cages were put on each side of the box one empty and the other containing the

social target, a male C57 of the same age. Themice were habituated four times prior to testing by: placing themouse in the arena with

each of the plastic cages empty (i.e., no novel object or social target) and allowed free exploration for 10minutes. Testing trials lasted

10 minutes where each mouse was allowed to freely explore the chambers.

Maternal separation and social defeat stress
Maternal separation was performed as described previously (Sachs et al., 2013). Briefly, the experimental pups were separated from

their dams for three hours each day on post-natal days (PNDs) 1-14, and control pups were reared under standard conditions. Litters

were assigned to control and experimental groups in random pairs, such that each experimental litter has an aged-matched control.

During the separation period, the pups were placed on a heating pad and remained in contact with their littermates. Animals were

weaned on day 21.

For behavioral experiments, males were subjected to SDS starting when they were eight-ten weeks old (or were left as controls).

For the SDS paradigm, experimental mice were introduced into the home cage of a singly housed resident CD1male for five minutes

a day for ten days. These mice were then introduced into the home cage of a new CD1 male mouse each day. On day 11, mice were

tested for social avoidance behavior. For in vivo physiology experiments, animals were implanted at 14-16 weeks, and the forced

interaction test was performed after a 2-wk recovery period.

SSFO experiments
Mice were anesthetized with 1.5% isoflurane and placed in a stereotaxic device. A 33-gauge Hamilton syringe was used to infuse

0.5 mL of AAV2-CaMKIIa-SSFO-EYFP vector at a rate of 0.1 ml/min into left IL_Cx (1.7mm AP, 0.25mm ML, 2mm DV from the

dura). An AAV2-Ef1a-DIO-SSFO-EYFP vector was used a non-expressing control. CaMKII and DIO surgeries were conducted

alternately such that animals’ experimental recording timeline was distributed randomly. Two weeks after viral surgeries, mice

were anesthetized again, and recording electrodes will implanted as described above. A fiberoptic cannula was built into the

IL_Cx/PrL_Cx bundle (Hultman et al., 2016; Kumar et al., 2013). The tip of the 100mmdiameter fiberoptic (Doric Lenses) was situated

250mm above the tip of the IL recording microwires (i.e., targeting the dorsal IL_Cx border). In vivo recordings and stimulations were

conducted after 2 weeks of recovery. Light stimulation was delivered at 1.5 mW (473nm wavelength, CrystaLaser, CL473-025-O),

and the laser output was verified using a Power meter (Thorlabs, PM100D). SSFO expression was confirmed histologically in

IL_Cx in 6 out of the 8 animals. Five of the six SSFOmice showed a strong suppression of IL_Cx gamma activity immediately following

blue light stimulation. None of the DIO-SSFO mice exhibited this physiological response, thus the one SSFO mouse that did not

demonstrate IL_Cx gamma suppression was removed from subsequent analysis in the IL_Cx-DBS study.

Ketamine experiments
Mice used for SSFO experiments were used for ketamine experiments after a 1 week ‘‘washout’’ period to return to baseline. Mice

were pseudorandomized to the ketamine or saline group such that half of the mice in each group were infected with SSFO, and the

other half were infected with DIO-SSFO. This pseudo randomization was performed in order to avoid any confounds that may have

resulted from prior IL_Cx-DBS.Mice were injected with ketamine (20mg/kg, i.p.) twenty-four hours prior to the forced interaction test.

Critically, while prophylactic administration of ketamine (20mg/kg, i.p.) has been shown to prevent the subsequent emergence of

behavioral dysfunction in 129S6/SvEv strain mice subjected to cSDS (Brachman et al., 2016), this ketamine administration strategy
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is not effective is preventing stress induced behavioral dysfunction in C57 mice (Brachman et al., 2016; Donahue et al., 2014).

Ketamine (Ketathesia, Henry Schein, 100mg/mL) was diluted in saline to a concentration of 5mg/mL prior to administration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using MATLab software R2016a (Mathworks). We used machine learning to define behaviorally

relevant Electome Factors. Post hoc testing was not performed on the across-group differences observed post-stress since this

was a learned feature of our dCSFA model. The stress-susceptibility/resilience identities of animals was not utilized to supervise

training of the pre-stress neural data. Thus, pre-stress differences in Electome Factor activity could be quantified. This was accom-

plished using a two-tailedWilcoxon rank-sum test at a = 0.05, and the area under of the curve of the receiver operating characteristic.

We did not correct for multiple comparisons in this analysis since our chosen strategy was to validate all of the significant

Electome Factor differences using complete out-of-sample testing. Our a priori hypothesis for this subsequent validation testing

was that other MDD vulnerability models would show the same Electome Factor differences identified in the vulnerable mice prior

to cSDS. All out-of-sample testing to validate Electome Factor 1 and Electome Factor 2 as signatures of stress vulnerability (sdk1,

IFNa, and ELS) was performed using a one-tailed Wilcoxon rank-sum test. Using this one-tailed testing strategy allowed us to

constrain the number of animals needed per group while retaining statistical power. Finally, we combined the p values for the three

independent validations sets using a Fisher’s combined probability test. With this approach, we were able to increase the number of

independent validation paradigms (5 total independent validation experiments for the study, with 6-8 animals per manipulation or

control group for each experiment). The correlation between unit firing and Electome Factor activity was tested using a Spearman

Regression with bootstrapping. A Bonferroni correction was applied to account for the 4 Electome Factors tested.

For testing aimed at validating MDD-related behavior inducing effect of the previously published sdk1model, we used a two-tailed

Wilcoxon rank-sum test to compare the post-stress social interaction ratio ofmice that overexpressed sdk1 versus controls.We used

a Two-way ANOVA to test whether sdk1 overexpression impacted normal social behavior, and a two-tailed un-paired t test to test

whether this manipulation impacted immobility time in the forced swim test. To test the impact of IFNa on social behavior, we used a

Mixed Model ANOVA. We determined both the Group effect (between subject) and the Social effect (within subject) for the IFNa and

vehicle treated animals. Post hoc testing was performed with a paired two-tailed t test for the within subject analysis, and an un-

paired two-tailed t test for the between subject analysis. For the sucrose preference experiment, we first established the paradigm

in an independent cohort of C57 mice (see Figure S1). This initial analysis was performed using a two-tailed paired t test. We then

tested our a priori hypothesis that mice chronically treated with IFNa would show a disruption in sucrose preference while mice

treated with a vehicle would not. This was achieved with two-tailed paired t tests. For testing establishing MDD-related behavior

in the ELS-vulnerability model for which there was no prior literature, our statistical analysis was performed using a Two-way

ANOVA. All post hoc testing was performed using un-paired two-tailed t tests.

Our a priori hypothesis for the anti-depressant manipulation validation studies was that anti-depressive therapeutics (IL-DBS or

ketamine) would fail to suppress Electome Factor 1 activity. We used a one-tailed Wilcoxon rank-sum test for this analysis. Using

this one-tailed testing strategy allowed us to constrain the number of animals needed per group while retaining statistical power.

We also tested the effect of these manipulations on Electome Factor 2 and 3 activity. Electome Factor 2 and 3 activity was increased

in the mice that exhibited MDD-like behavioral dysfunction after cSDS. Nevertheless, since our experiments were performed in

stress-naive mice, our a priori hypothesis was that these anti-depressant manipulations would have no impact on Electome Factor

2 or 3. We used a mixed-model-ANOVA (with Box—Cox Transformation) for this analysis. Post hoc testing was performed with a

two-tailed Wilcoxon rank-sum test.

DATA AND SOFTWARE AVAILABILITY

Code base for dCSFA analysis can be found at https://github.com/neil-gallagher/CSFA.
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Figure S1. Example of Autocorrelation and Cross-Correlation Functions that Define an Electome Factor, Related to Figure 2

Brain areas are shown to the top and the left (red) identifying auto-correlation and cross-correlation density functions for Electome Factor 1. Amplitude values

reflect the relative LFP spectral energy observed at each frequency, where each Electome Factor is normalized to the total energy observed across all of the

25 factors. Phase offsets for each cross-correlation density functions are also shown in purple (i.e., directionality; axis scale to the right). Positive phase offsets

correspond to frequencies at which the area listed along the left leads the area listed on the top. Negative phase offsets correspond to the frequencies at which

the area listed on the top leads the area listed on the left. The circular plot depicts the frequencies for power (outer rim) and coherence (curved lines connecting

two regions) above an amplitude threshold of 0.08. As a representative example, the power measures for infralimbic cortex (IL_Cx) are highlighted in bright green

in both the circular and correlation plots; coherence between IL_Cx and basolateral amygdala (BLA) are highlighted in magenta.
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Figure S2. Establishment of a Sucrose Preference Assay in C57 Mice, Related to Figure 5

C57 mice were placed in the testing chamber for one hour on two consecutive days. Preference for sucrose was observed across the population on the second,

but not first testing day (t9 = 0.86 and p = 0.41; t9 = 2.7 and p = 0.026 for Day 1 and Day 2, respectively, using two-tailed paired t test. n = 10 mice). Data are

represented as mean ± SEM.
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Figure S3. Electome Factor 3 Activity Tends to Be Increased in One Translational Model of MDD Vulnerability, Related to Figure 5

Electome Factor 3 Activity was averaged and plotted for each phase of the homecage–FIT. Treatment with IFNa failed to increase Electome Factor 3 activity

(F1,28 = 0.05, p = 0.41 for group effect). Early life stress tended to increaseElectome Factor 3 activity, though these differences did not reach statistical significance

(F1,20 = 2.8, p = 0.06 for group effect).
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Figure S4. Spectral Plots Showing LFP Activity in NAc and BLA prior to and following IL_Cx Light Stimulation, Related to Figure 6

(A) Our IL_Cx-DBS protocol suppressed Electome Factor 2 activity. The suppression did not solely reflect stimulation induced changes in local IL_Cx oscillatory

activity.

(B) No stimulation effects were observed in a mouse infected with an AAV2-CaMKIIa-EYFP vector in IL.
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Figure S5. Validation of Electome Factor 1 Encoding Distinct Emotional States, Related to Figures 1 and 2

(A) Treatment with the anxiolytic agent, Buspirone, does not impact the Electome Factor 1 vulnerability biomarker. We treated eight implanted mice with saline

and subjected them to our home cage—FIT protocol. Three days later, we treated these mice with saline (n = 4) or Buspirone (1.5mg/kg, i.p; n = 4), and repeated

the FIT. Treatment with Buspirone had no impact on Electome Factor 1 activity during the FIT-CD1 period (p = 0.69 using Wilcoxon rank-sum test). These mice

were implanted in PrL_Cx, IL_Cx, NAc, BLA, and CeA.

(B) Validation of Electome Factor 1 activity coding for the homecage—FIT periods. Electome Factor 1 activity measured during the homecage—FIT test was

pooled across the control animals used for the IFN (n = 8), ELS (n = 5), and SSFO experiments (n = 5), and all data measured during the first session of the sdk1

experiment (N = 12 animal). Electome Factor 1 activity significantly increased during each subsequent interval of the homecage—FIT test, validating the findings

from the pre-stress model that was discovered for the cSDSmice (Friedman’s X2 = 26.68, df = 2, N = 30, p = 1.6x10�6; p < 0.05 for Bonferroni-corrected post-hoc

testing using sign-rank test). Receiver operating characteristic area under the curve for FIT-CD1 versus All (Home and FIT-Empty) = 0.74.

(C) Vulnerability prediction scores from PFC reactivity correlate fails to predict vulnerability in the ELS model. Our previously published neural correlate of cSDS

vulnerability (PFC 2-7Hz reactivity in the FIT) (Kumar et al., 2014) failed to predict increased vulnerability in the ELS model, whereas Electome Factor 1 activity in

the same animals successfully predicted increased vulnerability as shown in the main text.

(D) Predictive performance of univariate features composing Electome Factor 1.We tested whether the univariate components (seven power measures and two

coherence measures) of Electome Factor 1 also predicted vulnerability to future stress. Activity was measured during the FIT-CD1 segment in the pre-stress

cSDS cohort. The predicted vulnerability rank is plotted for each mouse based on each brain activity measure (N = 19 mice; bottom). Mice that exhibited

susceptibility after stress are highlighted in red, and mice that exhibited resilience after stress are highlighted in green. The area under the curve (AUC) for the

receiver operating characteristic (ROC) is shown above (black). Electome Factor 1 (identified by blue circle on AUC plot) outperformed each of the univariate

features we tested.
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Figure S6. Intra-area Synchrony, Related to Figure 1

Coherence was calculated from each microwire LFP pair implanted in the same brain area using magnitude-squared coherence:

CABðfÞ = jPsdABðfÞ j 2
PsdAAðfÞPsdBBðfÞ;

where coherence is a function of the power spectral densities (Psd) of A andB, and their cross-spectral densities. Results obtained for the ‘pre-stress’ recording in

the cSDS cohort were averaged across animals for each interval of the homecage-FIT recording (N = 44 mice). We found high coherence across the wires

implanted within PrL_Cx and IL_Cx (> 0.6), and very high coherence across wires implanted within the other brain regions (> 0.8). Data were shown as the 95%

confidence interval averaged across the 44 mice. Thus, the Electome Factors are stable (at least up to 50Hz) to minor difference in electrode placement, because

the measured spatiotemporal dynamics are largely redundant across individual microwires
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Figure S7. Histological Confirmation of Electrode Placements, Related to Figures 1 and 2

Electrode bundles were centered within the red boxes shown for each target brain area (left). The initial cSDS cohort was also implanted in right PFC, which is

highlighted by the light blue box. Representative histological images are shown the right. Red arrows highlight electrode tracks. White scalebars indicate 500um.
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